Discussion Material EF09 - BSM

More general explorations

Tulika Bose, Zhen Liu, Simone Pagan Griso

https://snowmass21.org/energy/bsm_general

Aug.30-Sep.3, 2021

Reminder: EF09 Focus Questions

- Are there new interactions or new particles around or above the electroweak scale? To what extent can future experiments and colliders probe this?
- Long-lived and feebly-interacting particles represent an alternative paradigm with respect to traditional BSM searches. To what extent can future detectors and accelerators probe such particles?
- How do we conduct searches in a more model-independent way?
- How do we compare the results of different experiments in a more model-independent way to ensure complementarity and avoid gap in coverage?
- Is lepton flavor universality violated? What do we learn from high energy/p_T searches?

New Resonances:

- Simplified modes:
 - Dilepton
 - Dijets
 - Diboson (VV, Vh, etc)
 - Heavy Neutrino

We hope to layout the basic reach of future collider programs **comprehensively** in these simplified modes.

Resonance search and EFT searches are both needed.

Also explore more complicated modes (triboson, boosted topologies, modes w/ taus etc.)

Add updates since European Strategy (e.g. muon collider results, new HL-LHC results etc.)

New fermions:

Vector-like quark pair production

Simplified Modes:

Heavy Neutral Leptons

Vector-like Quarks

• T, B, X5/3

*Leptoquarks, Top squark are covered through (EF08)

VLQ topologies not much studied for the European Strategy.

Opportunity to add new results, updates (including muon collider results), summary plot (if possible)

Long-lived particles:

- LLP searches have strong interplay with detector design!
 - Of the uncovered (or less well-covered) signatures, which ones are most demanding in terms of new technologies or experiments needed?
 - how can we take advantage and/or shape future development in detector technology?
 - how to reasonably approach projection for detectors at early stage of design?
- How do we compare future collider options?
 - What are "must-have" LLP signatures (e.g., HSCP, disappearing tracks, displaced vertices...)?
 - Can we compile a short list of benchmark models?
 - And then test sensitivity to LLP signatures? For varying assumptions of detector performance?
- How do we achieve comprehensive coverage with existing accelerator facilities?
 - Build on and extend the LLP white paper: arXiv 1903.04497
 - o Better exploit upgraded HL-LHC detectors, advanced techniques, new trigger strategies...
 - Exploit the full potential of auxiliary experiments (FASER, milliQan, MATHUSLA, MOEDAL,...)
 - Explore novel forward facilities/detectors with unique physics cases for LLPs...

LLP: modes under consideration

- Colored LLP
 - (gluino, mini-split SUSY)
 - (LSP mass 0 GeV and 100 GeV mass gap)
 - (mass v.s. ctau)
- Non-colored LLP
 - (Higgsino, GMSB)
 - (decay via Higgs and Z, getting reach from both leptonic and hadronic decays)
 - (mass v.s. ctau)

- Higgs portal
 - (Higgs to LLPs, neutral naturalness)
 - (LLP mass 50 GeV, 10 GeV, 1 GeV)
 - (Br v.s. ctau)
 - Disappearing Track
 - (Higgsino reach and Wino reach)
 - (mass reach at different colliders)
 - Other more complicated scenarios:
 - Dark showers w/ EF10
 - Light LLP benchmarks w/ RF6

Add updates since European Strategy, new results (incl. muon collider results), updated and/or new summary plots (e.g. in SUSY and Higgs decay scenarios...)

Additional Questions:

Are there broad classes of signatures and/or models that are not covered?

How do we compare the results of different experiments in a more model-independent way to ensure complementarity and avoid gap in coverage?

How do we compare different collider options in a comprehensive way (different options have varying levels of maturity, coverage...)?